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Dynamic Control of Neuronal Morphogenesis by Rho Signaling
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Polarization of the neuronal cell body and initiation of the first neuritic process rep-
resent the starting point of a series of dynamic metamorphic events by which the
newly acquired identity of a group of neurons can be translated into a morphologi-
cally complex web of three-dimensional neuronal circuit. Despite the critical impor-
tance of these events, little is known about the molecular signaling mechanisms that
either regulate the temporal sequence of these steps or ensure the accuracy and the
spatial consistency of the resulting circuits. In this review, based on recent findings
from our group and others, we present a working model on how the initial events in
neuronal morphogenesis in the CNS may be controlled by multiple Rho pathways.
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Almost a century ago, Ramon y Cahal realized the
immense potential that the mammalian central nervous
system (CNS) acquired during development by virtue of
connecting many neuronal cell types with extremely
diverse morphology. Since then, a flurry of knowledge has
been obtained, both at the physiological and biochemical
levels, about the nature of the brain and neurons. Recent
progress in cellular genetics makes it even possible to
now envisage therapeutic usefulness for re-engineered
neural stem cells in the fight against many debilitating
diseases of the CNS.

During its lifetime, a neuron has to undergo numerous
steps through which it ultimately distinguishes itself
from all the other cells of the body (1). The first critical
series of steps concerns the end of self-renewal whilst
being a neuronal progenitor, then its exit from cell cycle,
closely followed by its final cell fate choice. Recent
advances have established that a complex network of
transcription factors and trophic determinants controls
the temporal sequence and the spatial spreading of these
events. Taking advantage of these findings, several
groups have now reported the successful propagation and
derivatization en masse of various types of neurons out
from embryonic as well as neural stem cells.

Astonishing, however, still remains our lack of insights
concerning the molecular mechanisms controlling a sec-
ond critical series of steps in neuronal development,
namely the nascence of the first neuritic processes in a
central neuron (2, 3). Indeed, few studies have focused on
the molecular events critical for understanding how and
when an axon is formed. In contrast, once an axon is
born, work from a number of laboratories have identified
an essential role for molecular gradients formed by
instuctive cues such as netrins, slits, semaphorins,
ephrins, neurotrophins and chemokines during the guid-
ance of this axon (e.g. 4–8).

Essential role for Rho-family GTPases in neuronal
morphogenesis

How does a neuron shape itself? A dynamic morpholog-
ical alteration is initiated during the acquisition of neu-
ronal polarity and must continue till the completion of
synaptogenesis. Rearrangement of actin and microtubule
cytoskeleton clearly lies at the heart of such neuronal
morphogenesis (9, 10). This is also a critical moment in
neuronal network generation since process generation
and cell body migration must be spatially and temporally
orchestrated in order to achieve patterned formation of
neuronal cell layers and appropriate wiring through syn-
apses (1, 4–6).

Recent findings from work in cultured cells and in
intact organisms indicate an important role for the
antagonism between Rac and Rho GTPases during these
steps (11–16) (Fig. 1). However, to date, a clear under-
standing regarding what specific effectors of the small
GTPases contribute to each of these opposing signaling
events is still missing. Furthermore, whether Rho always
antagonizes with Rac remains controversial (see e.g. 17,
18). In keeping with the critical role for the small
GTPases, in humans, several hereditary forms of mental
retardation or cognitive dysfunction have been linked to
molecular components of the Rho signaling such as the
RhoGAP oligophrenin-1 (19), the RhoGEF ARHGEF6
(20), or downstream effectors in the small G protein path-
ways PAK3 (21), LIMK-1 (22, 23), or FMR1 (24). How-
ever, a clear molecular picture as to the exact role of each
different small GTPase pathway is not yet established.
As a matter of fact, most small GTPases are abundantly
expressed early during development, especially in the
brain and are known to have an extensive cross-talk
between each other, thus rendering it challenging to
crack the fine details of their combinatorial code and
hierarchal cascade during any morphogenetic processes.

Control of earliest neuritogenesis by the Rho/ROCK
pathway

In recent years, a number of studies have examined
the morphological phenotypes associated with overex-
pression of Rho and related small GTPases in various
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types of neuronal cells, in vitro and in vivo. Resulting
perturbations in neuronal morphogenesis as well as dif-
ferential effects on actin, myosin, microtubules, or mem-
brane trafficking were then usually attributed to the spe-
cific overexpressed small GTPase type. In central
neurons, it has now become clear that up- and downregu-
lation of the Rho or ROCK, one of its downstream effec-
tors, dramatically alters axon outgrowth (25). In cerebel-
lar granule neurons, strong activation of Rho or ROCK,
by overexpression of their dominant active mutants or
applying a high dose of an endogenous Rho activator such
as SDF-1�, opposes and delays axonogenesis (25, 26).
Conversely, downregulation of Rho or ROCK immedi-
ately promotes initiation of neuritogenesis and promotes
axon outgrowth (25, 27, 28), presumably by reducing the
stability of the cortical actin network in the round neuron
(Fig. 1).

Interestingly, the number of axons in cerebellar gran-
ule neurons is physiologically set at two, a figure that is
just in between the number of axons reached with maxi-
mal Rho activity (zero axon) or minimal Rho activity (four
or five axons). This is in keeping with the finding that
constitutive Rho activity level remains relatively high in
neurons throughout neuritogenesis (29). The elevated
level of basal Rho and ROCK activity promotes a high
degree of tonic actomyosin contractility (30, 31), thereby
setting an efficient gate that may help constrain the tim-
ing and the number of axonal outputs coming out from
the cell body (Fig. 1), especially in neurons positioned
most closely to the pia mater that contains the highest
amount of the chemokine SDF-1�. Distancing away from
the source of the chemokine gradient during the postna-
tal expansion of the cerebellar layers may per se play a
significant part in triggering axonogenesis in vivo selec-
tively at the utmost inner layer of the external granule
cell layer (Fig. 2, upper panel).

Coordination of axon elongation via ROCK and
mDia1

The significance of Rho pathway may not be restricted
to negative regulation of axonogenesis. Additionally,
ROCK critically controls the motility of axonal growth
cones at the tip of extending axons (25, 32). This process
was suggested to be mechanistically somewhat distinct
from the elongation of the newly formed axons, at least in
the context of cerebellar granule neurons, as the latter
was significantly facilitated (rather than repressed) in
the presence of SDF-1�, a physiological Rho activator in
the culture medium (26). Curiously, this facilitation cor-
related with an increase in Rho, rather than Rac activity,
and was blocked by the Rho-inhibiting exoenzyme C3.
Thus, the existence a Rho-dependent axon elongation
mechanism was unexpectedly suggested in central neu-
rons. And the Rho effector critical for mediating this
effect was shown to be mDia1, an adaptor protein (33, 34)
enriched in cerebellar granule neurons (26, 35).

This raises a rather interesting cell biological question:
how can Rho in fact mediate both stimulation and inhibi-
tion of axon outgrowth, via two functionally antagonizing

Fig. 1. Classical view for the role of Rho family GTPases in
axon growth. Recent evidence shows that most guidance mole-
cules are able to modulate small G proteins by acting either on a
GEF or a GAP protein. ROCK, a Rho-associated kinase, invariably
lies downstream of Rho and gates the ability of Rac-dependent sig-
nals to promote axonogenesis and axon growth.

Fig. 2. A schematic diagram illustrating how the balance
between two opposing Rho effectors, ROCK and mDia1,
could, in principle, help coordinate formation and elonga-
tion of bipolar axons at the utmost inner layer of the exter-
nal granule cell layer (EGL) in the cerebellum. Early in the
development of the cerebellum when the EGL is still thin, SDF-1�
which is heavily expressed in the pia mater (pia), provides a potent
Rho-activating signal that prevents axonogenesis via strong activa-
tion of ROCK. However, as the EGL expands in size, the SDF-1�
concentration near the Purkinje cell layer (PL) becomes more and
more reduced, thereby allowing activity of Rho and ROCK to fall
within a range where initiation of the first and second axons can
occur. However, the residual Rho activity is likely to be sufficient to
maintain a high level of mDia1 activity. Such condition would be
ideally suited to promote coordinated outgrowth and elongation of
parallel fibers, while still keeping the number of axons up to two.
J. Biochem.
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effectors mDia1 and ROCK (26, 36, 37)? One factor to
consider is the presumed distinct localization of these
two Rho effectors within a neuron, as ROCK seems to be
expressed diffusely in a cell, while mDia1 was concen-
trated in the growth cones (26). Additionally, the two
effectors may differ in their responsiveness to intracellu-
lar Rho activity: indeed, it was shown that mDia-based
axon elongation was induced by a SDF-1� concentration
lower than that required for eliciting ROCK-based inhibi-
tion of axon outgrowth, at least in cerebellar granule neu-
rons (26). As mDia-Rho binding domain (RBD) bound
Rho-GTP tighter than did ROCK-RBD (38), one might
speculate that the biphasic phenotype could, in principle,
result from distinct Rho-GTP affinity of the two effectors
(Fig. 2, lower panel).

Rho/mDia1-dependent remodeling of actin struc-
tures and microtubules may be crucial in the
assembly of cytoskeletal scaffold required for axon
outgrowth

How does mDia1, an adaptor protein, exert its effect on
axon elongation? mDia1 is a prototypical member of a
class of adaptor proteins called formins that contain mul-
tiple formin homology domains FH1, FH2 and FH3 (33,
34, 39). Mutations in various formin proteins in yeasts,
flies and worms result in aberrant cell polarity and
cytoskeletal remodeling during heavy metamorphic
events such as cytokinesis or budding (40–46), suggest-
ing that formins exert their effects via control of the actin
and microtubule network. Indeed, in Saccharomyces cer-
evisiae, the Diaphanous homolog Bni1p was shown to be
critically involved in controlling actin assembly and the
formation of actin cables required for establishment of
cell polarity and directed growth (45, 47, 48). Most
remarkable, however, is the recent revelation that the
FH2 domain of mDia and other ortholog proteins acts as
potent and direct actin nucleators in vitro, in an Arp2/3-
independent manner. FH2 domain seems to facilitate
growth of nucleated actin filaments from the barbed
ends, where it remains physically bound without block-
ing actin polymerization (49–53). As a result, continued
elongation of unbranched microfilaments is obtained.
The actin structure that formins organize seems to be
distinct among species: Bni1p assembles actin cables in
budding yeast, while mDia1 facilitates formation of
stress fibers in mammalian fibroblasts.

Notwithstanding these differences, mDia1, like Bni1p
in the bud of the yeast, localizes to the growing end of the
cellular cortex in the round neuron and also to the
growth cones. Thus it is likely that mDia1 helps tether
the actin filaments it nucleates in a polarized manner,
through its binding to the barbed ends of the nucleated
filaments (54). Such mDia1-based polarization of assem-
bled actin microfilaments may play a crucial role in the
organization of an early cytoskeletal scaffold required for
axon outgrowth.

In yeast, the polarized actin structures induced by
Bni1p serve as track for type V myosin that migrates
towards the barbed ends to transport secretory vesicles
that are needed for budding and polarized growth (54–
57). This mechanism also seems to be involved in forming
the proper orientation of the microtubule organization,
as the myosin V (myo2p) was shown to move microtu-

bules along the polarized actin cables, via its binding to
Kar9/Bim1 complex (54–57 and references therein and
Fig. 3, upper panel). APC and EB1 have been postulated
as mammalian orthologs for Kar9 and Bim1, respectively,
and while the final proof has yet to come, it is expected
that similar kinds of actin-based microtubule organiza-
tion strategies are employed, under certain contexts, in
highly polarized mammalian cells such as neurons, as
well. Consistent with this notion, mDia1 affects orienta-
tion and the stability of microtubules in HeLa cells and
has been shown to spatially coordinate actin polymeriza-
tion and the stability of microtubule structures (58, 59).

As mDia proteins are most concentrated at the middle
portion of the growth cones, an area where actin and
microtubule cytoskeletons dynamically interact (60, 61),
it is tempting to speculate that mDia-driven remodeling
of new F-actin bundles and coordinated microtubule
arrays directs axon growth in a Rho-dependent manner,
in a way that remains largely independent of the Arp2/3
complex-dependent lamellipodia and filopodia regulation

Fig. 3. mDia may have a privileged role in assembling a
cytoskeletal scaffold that links actin and microtubule struc-
tures, both in the yeast buds and in neuronal axons. Upper
panel: In the yeast, the FH2 (red rectangle)-containing formin
Bni1p nucleates and assembles actin (yellow circles) cables which
serve as track for myosin V motors. One of the cargo that the
myosin V (Myo2) transports is the Kar9/Bim1 complex, which then
is able to recruit microtubules (green rods) into the buds. Lower
panel: FH2 domain (red rectangle) of mDia1 may exert a similar
effect at the neck of an initiating axon or inside the growth cones.
mDia1 nucleates and assembles actin (yellow circles) microfila-
ments, while probably also regulating microtubule (green rods) sta-
bility in a spatially coordinated fashion. However, the molecular
identity of the scaffold that hinges together actin and microtubule
structures remains to be identified. Furthermore, actin structures
in the filopodia and lamellipodia present at the edge of a growth
cone are likely to be assembled in a separate manner by distinct
nucleators (red hexagone) such as e.g. Arp2/3.
Vol. 134, No. 3, 2003
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(62), at the tip and edge of the growing growth cones
(Fig.3, lower panel). Further elucidation of the exact
nature of the mDia-based neuronal cytoskeletal struc-
tures will certainly provide new insight to better under-
standing the molecular machinery allowing neurons to
faithfully translate extracellular signals into orches-
trated morphogenesis and faithful patterning that are
critical for establishing a functional neuronal circuit.
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